Viscosity & Pharmaceuticals – Introducing Viscosity Measurements with VROC® initium one plus

Zachary Imam, PhD
10 June 2021
Viscosity – Resistance to Flow

- Velocity gradient perpendicular to flow
- Shearing motion – adjacent fluid elements forced to slide past each other
- Shear viscosity \(\eta \equiv \frac{\text{shear stress}}{\text{shear rate}} = \frac{\sigma}{\dot{\gamma}} \)
- Reflects molecular level behavior
 - Size, shape, interactions
 - Microstructure

\[
\eta \equiv \frac{\text{shear stress}}{\text{shear rate}} = \frac{\sigma}{\dot{\gamma}}
\]

\[
\sigma = \eta(T, \dot{\gamma})\dot{\gamma}
\]
VROC® — Viscometer/Rheometer-on-a-Chip

Microfluidics and MEMS (Micro-Electro-Mechanical Systems)
- MEMS Sensors – Silicon (Si) Pressure Sensor Array
- Microfluidics – Precision Glass Micro-Channel
- “rectangular-slit method” (USP, chapter 914)

Control
\[\dot{\gamma} \sim Q \]

Measure
\[\tau \sim \frac{\partial P}{\partial x} \]

Dynamic Viscosity
\[\eta = \frac{\tau}{\dot{\gamma}} \]

Graph of Pressure vs. Sensor Position (mm)
VROC® initium one plus— Features

- High Throughput Automatic Viscometer/Rheometer
- 26 µL of Sample (minimum) 50 µL Full Range
- 40 Vial Rack, 96 Well Plate
- Sample Retrieval and Recovery
- 4-70 °C with Built-in Peltier Temperature Control
- Sample Rack Temperature Control, 4-40 °C
- Shear Rate and Temperature Sweeps
- Advanced Measurement & Cleaning Protocols
VROC® initium one plus

- Instrument components now compatible with organic solvents
- More efficient cleaning protocols
 - Organics often requiring only one solvent
 - More samples between refills
- Low sample and cleaning solvent volumes – less waste generated
- Loading protocols compatible with new vials with improved seal – minimizes evaporation
VROC® initium

- VROC® Chip
- Auto Sampler Syringe Cleaning Port
- Pump
- 40 Vial Rack
- 96 Well Plate
- Custom Rack
- Temperature Controlled
- 100 μL Test Syringe
- 100 μL Injection Port
- Waste Port
Overview

Benefits of Viscosity Measurement

• Practical application – injectability, processing, blinking, topical........
 ➢ Predict performance & processability

• Reflects microscopic behavior – investigative tool
 • Individual molecules – size, shape
 • Pair interaction
 • Complex structure formation
 • Impact of environment on all above
 ➢ Intelligent formulation – work smart, not hard!

Topics

• Sample recovery details
• Injectability of concentrated protein solutions
• Storage stability – sample age
• Temperature variation
 • Concentrated proteins
• Shear rate dependence
 • Excipients
 • Protein solutions
Sample Recovery – Efficiency

Efficiency defined as
\[
\frac{\text{mass after recovery}}{\text{initial mass}} \times 100
\]

Dependent on
- Initial volume in vial
- Viscosity

- 3 cP
- 10 cP
- 50 cP
- 150 cP

efficiency (%) vs. sample volume (µL)
Sample Recovery – Impact on Viscosity (≤ 3%)

- thera tears®
- Murine Tears®
- Bovine γ-Globulin 70 mg/mL
- BSA 30 mg/mL
- PBS
Concentrated Proteins Storage Stability

- 100 mg/mL Bovine γ-Globulin in PBS
 - premium vs. elite quality grade
 - stored at 4°C
- Viscosity measured at 25°C over time
 - Identify stability window
 - Quantify rate & magnitude of change
Concentrated Proteins
Storage Stability

• 250 mg/mL Bovine γ-Globulin
 • PBS, PBS + NaCl, PBS + Arginine, PBS + Arginine + NaCl
 • stored at 4°C
• Viscosity measured at 25°C over time
 • Identify stability window
 • Quantify rate & magnitude of change

![Graph showing viscosity over time for different buffers.](image-url)
Concentrated Protein Solutions
Temperature Sweeps

- Relevant temperatures
 - Storage/processing – 4°C
 - Delivery/injection – 25°C
 - Body – 37°C
- Arrhenius behavior prior to denaturation
 \[\eta = \eta_0 e^{E_a/kT} \]
- Activation energy of protein solutions
 - Varies with concentration
 - Concentrated solutions
 - \(E_a \) deviates from buffer
 - Cannot predict from buffer, must measure

Arrhenius Plot

- 250 mg/mL Bovine \(\gamma \)-Globulin (PBS, pH 7.4)
 - 430 cP (4°C)
 - 82 cP (25°C)
 - 39 cP (37°C)

\begin{align*}
\text{predicted from buffer}
\end{align*}

Arrhenius Plot

- 250 mg/mL BgG
 - \(\gamma = -2127.8x \)
 - \(R^2 = 0.9984 \)
- PBS
 - \(\gamma = -6346.6x \)
 - \(R^2 = 0.9997 \)

\begin{align*}
\ln(\eta/\eta_{\text{ref}}) &= \gamma (1/T_{\text{ref}} - 1/T) \\
\gamma &= \frac{E_a}{R}
\end{align*}
Bovine γ-Globulin (250 mg/mL) pH 7.2 (pI~7), vary salt type & concentration

- Near pI
 - Initially salt increases solubility
 - Further addition decreases solubility
- Interaction potential
 - Salt initially decreases attraction
 - Additional salt increases attraction
- Viscosity increase due to reversible cluster formation
- Shear rate dependence to probe characteristic time/length scales

Hofmeister series

$\text{SO}_4^{2-} > \text{Cl}^- > \text{Br}^-$

$\text{K}^+ > \text{Na}^+$

Salting out → Salting in
Shear Rate Sweeps
Na$_2$SO$_4$ ionic strength

Cross (dashed)
\[\eta_o = \eta_\infty + \frac{(\eta_o - \eta_\infty)}{[1 + (\lambda \dot{\gamma})^m]} \]

Carreau Yasuda (solid)
\[\frac{\eta - \eta_\infty}{\eta_o - \eta_\infty} = [1 + (\lambda \dot{\gamma})^a]^{(n-1)/a} \]

<table>
<thead>
<tr>
<th>[IS] (mM)</th>
<th>Cross</th>
<th>C-Y (a=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\lambda) (msec)</td>
<td>(m)</td>
</tr>
<tr>
<td>75</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>1200</td>
<td>0.15</td>
<td>0.94</td>
</tr>
</tbody>
</table>

\(\lambda \) – characteristic relaxation time scale
\(m \) – indicates increasing polydispersity <1

Increase in \(\lambda \), polydispersity consistent with cluster formation
Concentration Dependence – Full Range

- Ross-Minton equation
 \[\frac{\eta}{\mu} = \eta_{rel} = \exp \left(\frac{[\eta]c}{1 - \frac{k}{\nu}[\eta]c} \right) \]
 - \(k \) – crowding factor
 - \(\nu \) – Simha shape parameter
- Analogous to colloidal hard sphere behavior
- Divergence at maximum packing
- Introduce \(\nu \) – proteins not spherical

NaCl (mM) | Ross-Minton parameters
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>([\eta]) (mL/g)*</td>
</tr>
<tr>
<td>150</td>
<td>8.4</td>
</tr>
<tr>
<td>1000</td>
<td>8.4</td>
</tr>
</tbody>
</table>

*Determined from single point intrinsic viscosity.
Injection Force Estimation from Viscosity

Force required to sustain viscous flow & overcome friction

Newtonian Case

\[F = F_{\text{viscous}} + F_{\text{friction}} \]

where

\[F_v = P_1 \times \pi R^2 \]

\[\Delta P \times \pi R^2 = \sigma \times 2\pi R l \]

\[\sigma = \eta \dot{\gamma} \quad \text{and} \quad \dot{\gamma} = \frac{4Q}{\pi R^3} \]

\[\Delta P = \frac{8\eta lQ}{\pi R^4} \]

\[P_1 = \Delta P_1 + \Delta P_2 + \Delta P_3 \]

\[P_1 \sim \Delta P_3 \]

resistance in needle dominates

\[F_v \approx 8\eta l n Q \frac{R_p^2}{R_n^4} \]

\[I_n = \text{needle length} \]

\[R_p = \text{piston radius} \]

\[R_n = \text{needle radius} \]

\[Q = \text{volumetric flow rate} \]

\[\gamma \approx 100,000 \text{ s}^{-1} \]
Injection Force Predictions
Aqueous Glycerol Solutions - Newtonian

Variable flow rate Q, fixed 27G NW needle

Variable needle gauge (R_n), fixed $Q = 0.1$ mL/sec

- prediction slightly underestimates measured values
- data includes friction
 - literature values suggests $F_f \sim 2 – 4$ N (glass), 2 – 6 N (plastic)

Concentrated Proteins
Viscosity vs. Co-solute & Injection Force

Bovine Gamma Globulin (BγG) **250 mg/mL (pH 7.4)**

- Viscosity threshold – 20 to 50 cP
- Individual amino acids to reduce viscosity
 - Arginine & Histidine HCl
 - Screen electrostatic & hydrophobic interactions
- Minimize additional testing with force estimate

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Viscosity (cP)</th>
<th>Injection Force (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>55.6</td>
<td>50</td>
</tr>
<tr>
<td>250 mM HisHCl</td>
<td>41.5</td>
<td>37</td>
</tr>
<tr>
<td>150 mM ArgHCl</td>
<td>35.2</td>
<td>31</td>
</tr>
</tbody>
</table>

(Q = 62.5 µL/sec, l_n = 12.7 mm, R_n = 0.092 mm, R_p = 3.175 mm, neglect friction)
Ageing’s impact on injection

Assumptions
- Needle Length: 17 mm
- Needle Radius: 0.135 mm
- Piston Radius: 4.325 mm

<table>
<thead>
<tr>
<th></th>
<th>Shear Rate (sec(^{-1}))</th>
<th>Flow Rate (mm/sec)</th>
<th>Injection Force (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500.00</td>
<td>6.76</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>25000.00</td>
<td>48.31</td>
<td>13.00</td>
<td></td>
</tr>
<tr>
<td>Day 92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500.00</td>
<td>6.76</td>
<td>2.29</td>
<td></td>
</tr>
<tr>
<td>25000.00</td>
<td>48.31</td>
<td>15.09</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Shear Rate (sec(^{-1}))</th>
<th>Flow Rate (mm/sec)</th>
<th>Injection Force (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500.00</td>
<td>4.83</td>
<td>2.23</td>
<td></td>
</tr>
<tr>
<td>26000.00</td>
<td>50.24</td>
<td>20.41</td>
<td></td>
</tr>
<tr>
<td>Day 55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500.00</td>
<td>4.83</td>
<td>2.82</td>
<td></td>
</tr>
<tr>
<td>26000.00</td>
<td>50.24</td>
<td>24.69</td>
<td></td>
</tr>
</tbody>
</table>
Summary

• Viscosity is more than a single number under one set of conditions
• Powerful tool when fully utilized
 • Select appropriate conditions to correlate to performance – predictive tool
 • Injectability
 • Processing/manufacturing
 • Probe interactions and microstructure – investigative tool to guide formulation
 • Formation of complex microstructure
 • Stability/denaturation of proteins with temperature
VROC® — Viscometer/Rheometer-on-a-Chip
Microfluidics and MEMS

\[\dot{\gamma} = \frac{\partial u_x}{\partial y} \]

\[u_x(y = 0, h) = 0 \]

\[u_x = u_x(y) \]

\[\eta \equiv \frac{\text{shear stress}}{\text{shear rate}} = \frac{\sigma}{\dot{\gamma}_w} \]

\[\dot{\gamma}_w = \frac{6Q}{wh^2} \]

\[\sigma = -\frac{\Delta P}{\Delta L} \frac{wh}{2(w + h)} \]

Where
- \(Q = \text{volumetric flow rate} \)
- \(w = \text{flow channel width} \)
- \(h = \text{flow channel height or depth} \)
- \(\Delta P = \text{pressure drop} \)
- \(\Delta L = \text{length of flow path} \)
VROC® initium – Advantages

- Micron scale slit flow
 - Small volume
 - High shear rates without instability

- Flow through channel design
 - Eliminates air-fluid interface
 - No evaporation
 - No interfacial viscosity contribution

- Sample retrieval – unlimited measurement with single loaded volume
 - Confirm repeatability
 - Temperature sweeps
 - Shear rate sweeps
 - Control sample history

- Advanced software features – operation & data analysis (Clariti™)
Protein Denaturation/Stability

Temperature Sweeps

• Detect loss of higher order structure – unfolding & association

• Alternative method avoiding interfacial artifacts

• Buffer – Arrhenius behavior & reversible

• BSA solution (pH 6.30 & pH 7.42)
 • Initially consistent with buffer
 • Abruptly deviates at ~62°C
 • Forward ≠ Reverse
 • Irreversible change dependent on buffer/stabilization
Shear Rate Dependence

• Multiple flow channel options now available (interchangeable) – achieve >100,000 sec\(^{-1}\)
 • Mimic application shear rates – injection or blink cycle
• Single sample volume for each flow channel
• Combine with temperature variation

Channel Details

<table>
<thead>
<tr>
<th>Channel</th>
<th>Max Pressure (kPa)</th>
<th>Depth (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B05</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>C05</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>E02</td>
<td>1800</td>
<td>20</td>
</tr>
</tbody>
</table>

Viscosity Chart

- **25°C**
 - Boving γ-Globulin (BγG) in PBS

- **37°C**

Temperature Chart

- sodium carboxymethyl cellulose (eye drop formulation)

- **25°C**
- **37°C**

- **B05 (filled)**
- **E02 (open)**
Viscosity vs. Shear Rate Scaling

Peclet Number

\[
Pe = \frac{\frac{L^2 \dot{\gamma}}{D_s^0}}{\frac{1}{\dot{\gamma}}} = \frac{\tau_B}{\tau_S} = \frac{L^2 \dot{\gamma}}{D_s^0 \frac{6\pi \eta_o L^3 \dot{\gamma}}{kT}}
\]

Adjust characteristic length scale L
(r_h ~ 5 nm from [\eta])

<table>
<thead>
<tr>
<th>[IS] (mM)</th>
<th>L (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>11.5</td>
</tr>
<tr>
<td>1200</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Increase in L consistent with cluster formation
Focus in on dilute regime – intrinsic viscosity ([η])

- Distinguish small viscosity increments
- Molecular characterization
 - Individual molecules
 - Pair or protein-protein interactions
Viscosity vs. Concentration

- Viscosity increases with concentration of macromolecules
 - Limit \(c \to 0 \)
 - Molecules far separated
 - Individual contribution – size, shape
 - ↑\(c \) further (dilute)
 - Molecular spacing decreases
 - Pair interactions become relevant
Viscosity (η) vs. Concentration (c) – Dilute Limit

- **1st order** – individual molecules ($[\eta]$)
 - MW, Intramolecular interactions/structure
- **2nd order** – pair interactions (k_H)
 - Hydrodynamic
 - Thermodynamic – repulsive & attractive

$$\eta = \frac{[\eta]}{\eta_s} = [1 + [\eta]c + k_H[\eta]^2c^2 + \ldots]$$

$$\eta = \frac{\eta}{\eta_s} = [1 + 2.5\phi + 6.0\phi^2 + \ldots]$$

Hydrodynamic radius:

$$r_H = \left(\frac{3[\eta]M_w}{10\pi N_A}\right)^{1/3}$$

$\eta_s \equiv$ solvent viscosity

$\phi \equiv$ effective hard sphere volume fraction

$[\eta] \equiv$ intrinsic viscosity

$k_H \equiv$ Huggins constant
Impact of Molecular Weight – BSA & BγG

Scaling viscosity data for analysis

\[
\frac{\eta_r - 1}{c} = [\eta] + k_H \eta^2 c
\]

\[
[\eta] = \lim_{c \to 0} \frac{\eta_r - 1}{c}
\]

<table>
<thead>
<tr>
<th></th>
<th>MW</th>
<th>[\eta] (mL/g)</th>
<th>(r_h) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA (140mM NaCl)</td>
<td>66K</td>
<td>4.6</td>
<td>3.6</td>
</tr>
<tr>
<td>BγG (PBS)</td>
<td>158K</td>
<td>6.0</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Higher MW → larger [\eta] & \(r_h\)
Impact of pH & Ionic Strength – BSA

Isoelectric Point = pI ~ 5

- pH = 5.4
 - Minimal negative charge near pI
 - Minimal impact of ionic strength
- pH = 8.4
 - More negatively charged
 - Increasing ionic strength
 - Screens electrostatic repulsion
 - Reduces k_H and PPI

<table>
<thead>
<tr>
<th>pH</th>
<th>Ionic Strength (mM)</th>
<th>$[\eta]$ (mL/g)</th>
<th>r_h (nm)</th>
<th>k_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>20</td>
<td>4.5</td>
<td>3.60</td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>4.4</td>
<td>3.58</td>
<td>1.15</td>
</tr>
<tr>
<td>8.4</td>
<td>29</td>
<td>4.3</td>
<td>3.55</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>4.2</td>
<td>3.54</td>
<td>1.32</td>
</tr>
</tbody>
</table>
Get Clariti™: Intrinsic Viscosity
Get Clariti™: Injectability