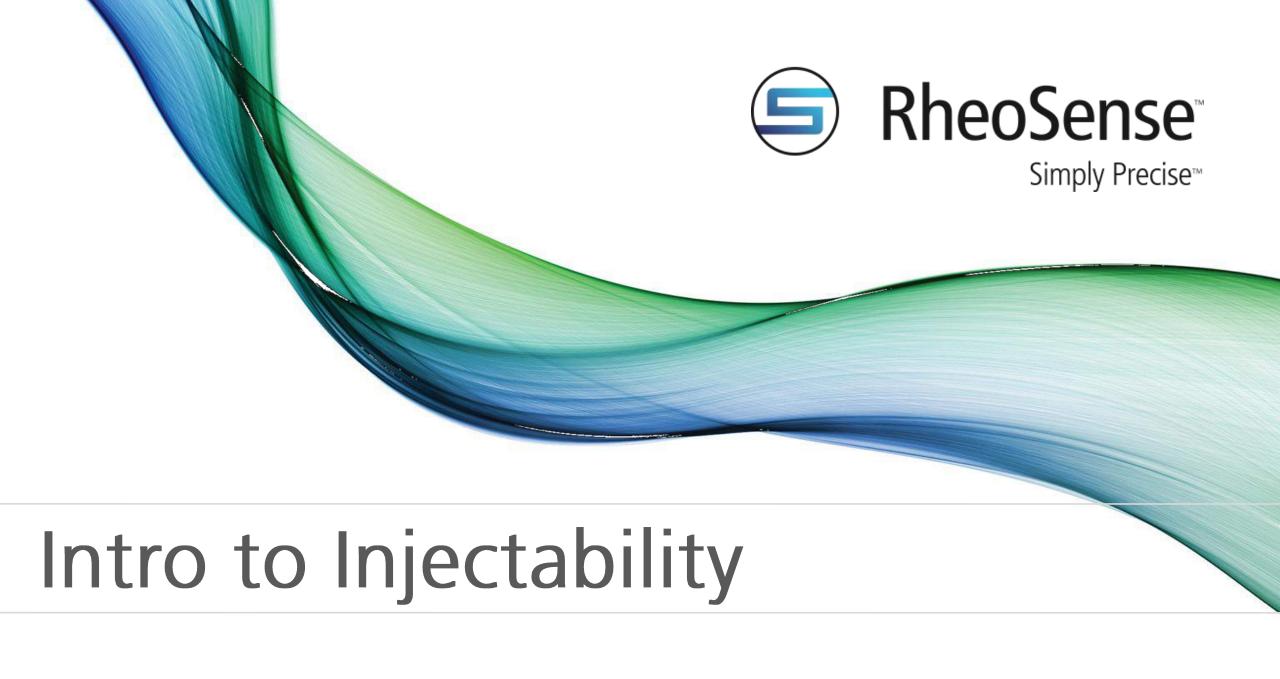
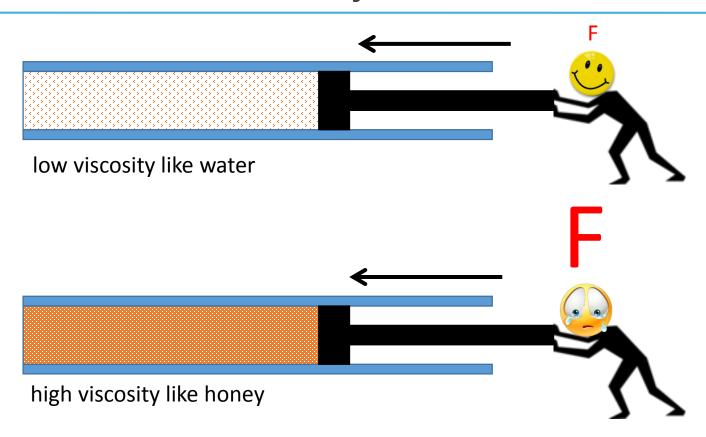
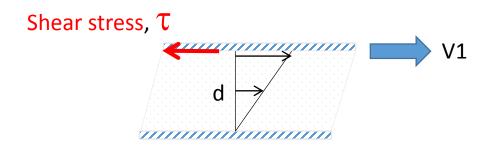


- - Headquartered in Silicon Valley
 - Patented technology VROC®
 - Fortune 500 client base


RHEOSENSE WEBINAR: INTRO TO INJECTABILITY


Grace Baek
Marketing & Sales
RheoSense, Inc.
GraceB@RheoSense.com
+1 (925)-866-3801 ext. 13


David Nieto Simavilla, Ph.D. Application Engineer RheoSense, Inc. <u>DNieto@RheoSense.com</u> +1 (925)-866-3801 ext. 20

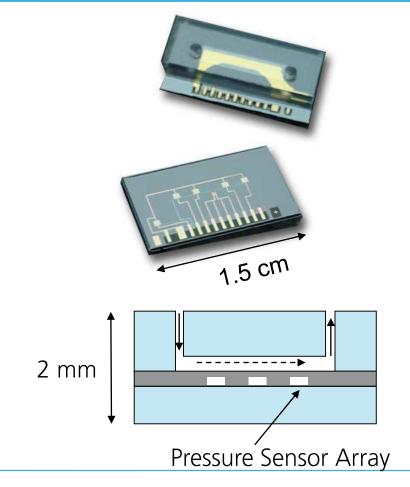
What is Viscosity?

Shear stress resists the shearing motion!

Shear stress = force/ wet area

$$\dot{\gamma} = \frac{V_1}{d} \qquad \qquad \eta = \frac{\tau}{\dot{\gamma}}$$

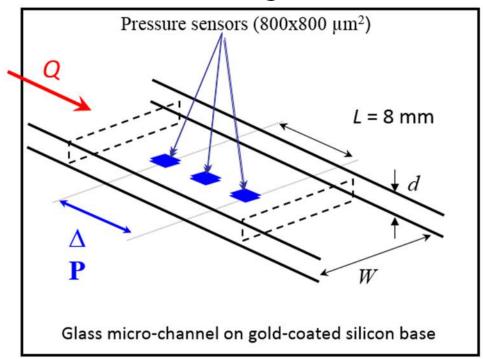
Shear rate is well defined in *only a few geometries* such as cone and plate, parallel plates, circular slit, rectangular slit geometries.

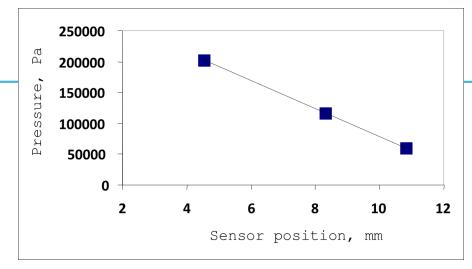

Our Technology

VROC®: The Viscometer/Rheometer-on-a-Chip

- Measures Absolute Viscosity
- Small Sample Volume (> 50 μL)
- Wide Dynamic Range in Shear Rates
- Fast and Superior Repeatability

VROC® is a hybrid of microfluidic and MEMS (Micro-Electro-Mechanical Systems) technologies:


- MEMS Sensors Silicon (Si) Pressure Sensor Array
- Microfluidics Precision Glass Micro-Channel



The VROC® Principle

Derivative of Hagen-Poiseuille

Pressure Drop ~ Shear Stress Flow Rate ~ Shear Rate

- Measure the pressure drop as a test liquid flows through a flow channel
- The slope of the straight line in the plot of the pressure vs. sensor position is proportional to the viscosity.

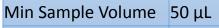
$$\eta = \frac{\tau}{\dot{\gamma}}$$

$$\tau \sim \Delta P$$

$$\dot{\gamma} \sim Q$$

RheoSense VROC® Powered Systems

Min Sample Volume 500 μL


Viscosity Range (cP) 1.0 - 2,000

Extensional Range 0.1 - 1000 s⁻¹

microVISCTM

hts-VROC®

Shear Rate Range .5 ~ 1,400,000 s⁻¹

Viscosity Range 0.2 ~ 200,000 cP

Temperature Range 4 ~ 70 ° C

Shear/temp Sweep Yes

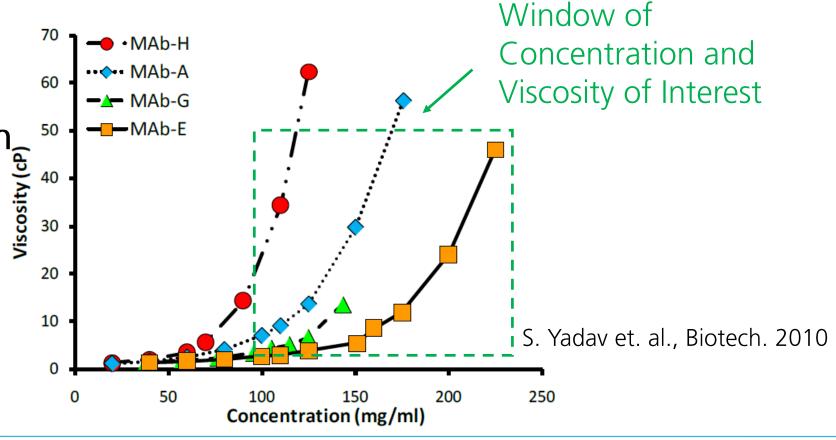
Temperature Range

4 - 105 (125) °C

Min Sample Volume	100 μL
Shear Rate Range, s ⁻¹	1.7 ~ 5,800
Viscosity Range (cP)	0.2 ~ 20,000
Temperature Range	18 ~50°C
Portable	Yes
Shear/Temp Sweeps	No

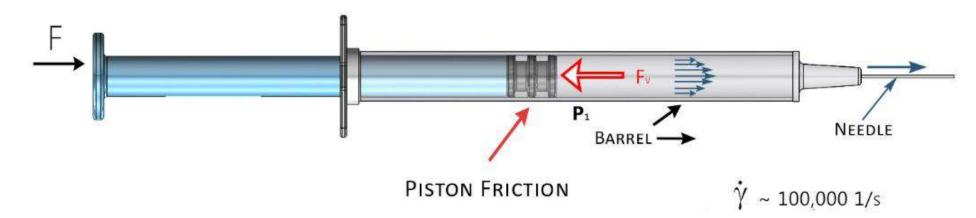
Common Bio-Pharmaceutical Applications

- Protein, RNA & Antibody Therapeutics
- Protein formulation and stability
- Help accurate Particle Sizing (for DLS)
- Injectability



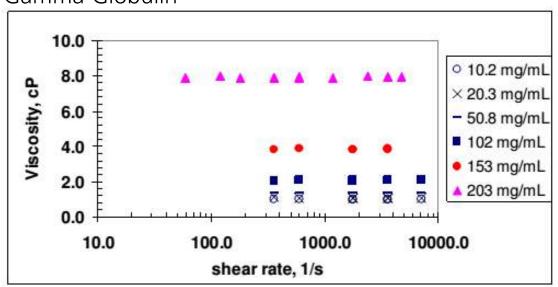
Viscosity and Protein Concentration

Less frequent dosing


→ Higher Concentration
 → Higher Viscosity

→ Injectability

Injectability (Force)

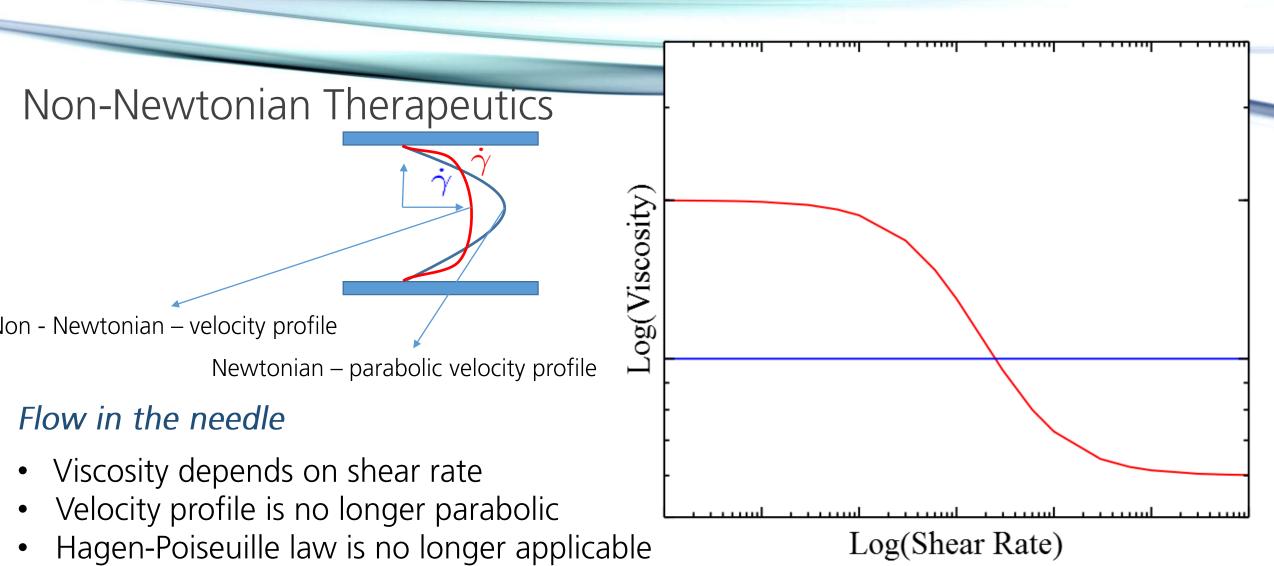


Force = Piston Friction + Resistive force, F_v (viscosity)

 $F_v = Area of Piston x P_1$

Injectability (Force) – for Newtonian Therapeutics

Gamma Globulin



Flow in the barrel and needle:

Hagen-Poiseuille $\Delta P = \frac{8\eta LQ}{\pi R^4}$

PISTON FRICTION
$$\dot{\gamma} \sim 100,000 \text{ 1/s}$$

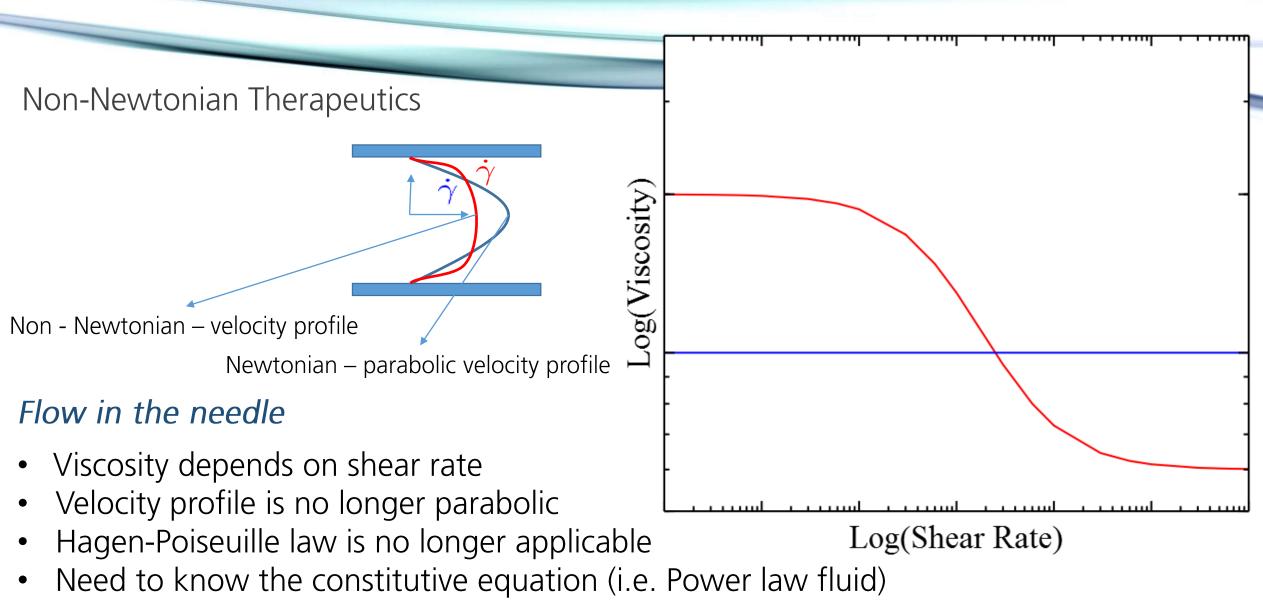
$$P_1 = \Delta P \text{ (barrel)} + \Delta P \text{ (needle)} = \frac{8\eta Q}{\pi} (\frac{L_b}{R_b^4} + \frac{L_n}{R_n^4})$$
 Pressure drop in the needle dominates

- Need to know the constitutive equation (i.e. Power law fluid)
- Need to measure viscosity at the wall shear rate for accurate estimation of injectability

Estimation of the Injection Force

Newtonian Therapeutics

ID, mm	Injection rate, ml/s	Shear rate, s ⁻¹	Viscosity, mPas	Estimated Injection force, N	Reported Injection force, N
0.184	0.1	163,000	30	42	42~51
0.184	0.0625	102,246	30	26.5	28~32


(Diameter of the plunger is 6.35 mm for the estimation and the needle length is ½ inch.) 29 gauge needle

Shear rate at the needle wall

$$\dot{\gamma}_n = \frac{4Q}{\pi R_n^3}$$

 $\dot{\gamma}_n = \frac{4Q}{\pi R_n^3}$ Injection force = $8\eta l_n Q \frac{{R_b}^2}{{R_n}^4}$ +piston friction

Injection	Shear Rate, s ⁻¹			
Rate, ml/s	26 gauge	27 gauge		
0.063	36,221	68,742		
0.1	57,954	109,987		
0.2	115,907	219,974		

Need to measure viscosity at the wall shear rate for accurate estimation of injectability

Applying the WRM correction

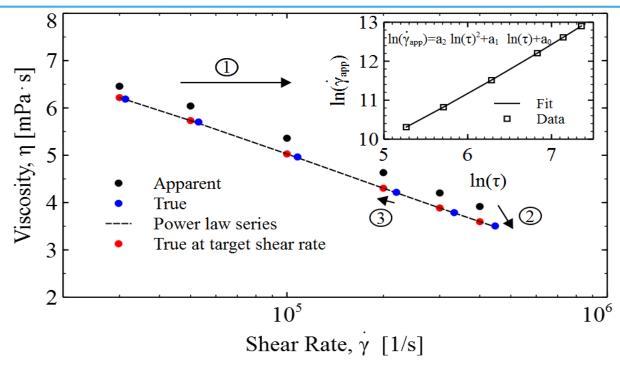
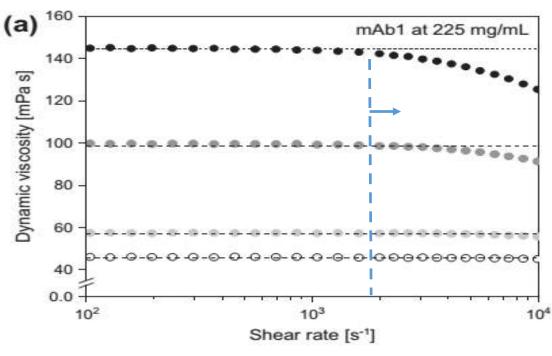


Figure A1. Shear thinning measurements of viscosity on 1% Methocel solution. Apparent viscosity results (black circles) are corrected to (steps 1&2) true viscosity results (blue circles) using WRM correction in Eqns. 1 and 2. The corrected true viscosity is fitted to a power law series that is used to obtain true viscosity at the target shear rates (step 3).

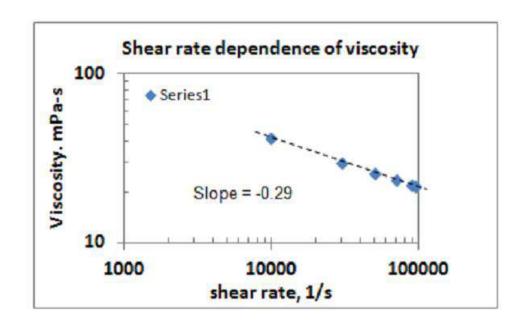
$$\dot{\gamma} = \frac{\dot{\gamma}_{app}}{3} \left(2 + \frac{d \ln \dot{\gamma}_{app}}{d \ln \tau} \right)$$

$$\frac{d \ln \dot{\gamma}_{app}}{d \ln \tau} = 2a_2 \ln \tau + a_1$$

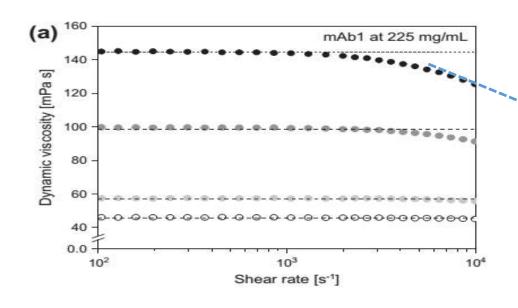

$$\eta = \frac{\tau}{\dot{\gamma}}$$

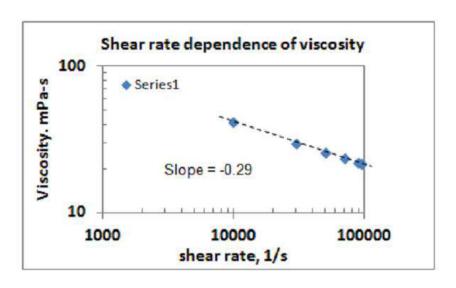
Application	Shear rate [1/s]
Sag and Leveling	10 ⁻² -10 ⁰
Flow coating, mixing	10 ⁰ -10 ²
Brushing, roll coating	10 ² -10 ⁴
Injectability, Lubrication	10 ⁴ -10 ⁷

Shear Rate **relevant** for injectability applications:


• Shear Rate range: 10⁴-10⁶ s⁻¹

Flow in the Needle – non-Newtonian Therapeutics


Shear thinning at 2,000 1/s or higher


(a) A. Allmendinger, Eur. J. Pham. Biopharm. 87 (2014)

Sample A

Flow in the Needle – non-Newtonian Therapeutics

To a good approximation, a power law can be applied.

$$\eta = m \, \dot{\gamma}^{n-1}$$

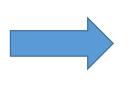
n = 1 for Newtonian

Flow in the Needle – non-Newtonian Therapeutics

Power law

$$\eta = m \, \dot{\gamma}^{n-1}$$

$$\tau = m \, \dot{\gamma}^n$$


$$\dot{\gamma}_{w} = \frac{Q}{\pi R^3} (3 + \frac{1}{n})$$

$$F = \pi R_b^2 \left(\frac{2L_n}{R_n}\right) \eta \dot{\gamma}_w + piston friction$$

Dynamics of Polymeric Liquids. Bird, Armstrong and Hassager 1987.

Estimation of Injection Force Flow Chart

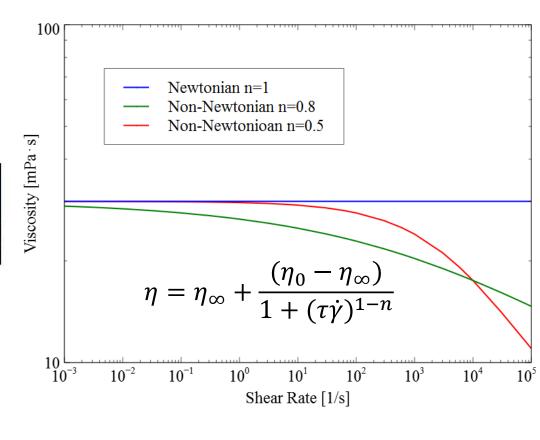
Measure viscosity for low to high shear rate up to the wall shear rate in the needle

Calculate

- power law exponent
- Wall shear rate
- Estimate viscosity at the wall shear rate

Estimate injection force

$$F = \pi R_b^2 \left(\frac{2L_n}{R_n}\right) \eta \dot{\gamma}_w + piston friction$$


Application Example: Non-Newtonian Therapeutics

Newtonian Therapeutics

ID, mm	Injection rate, ml/s	Shear rate, s ⁻¹	Viscosity, mPas	Estimated Injection force, N	Reported Injection force, N
0.184	0.1	163,000	30	42	42~51
0.184	0.0625	102,246	30	26.5	28~32

(Diameter of the plunger is 6.35 mm for the estimation and the needle length is ½ inch.)

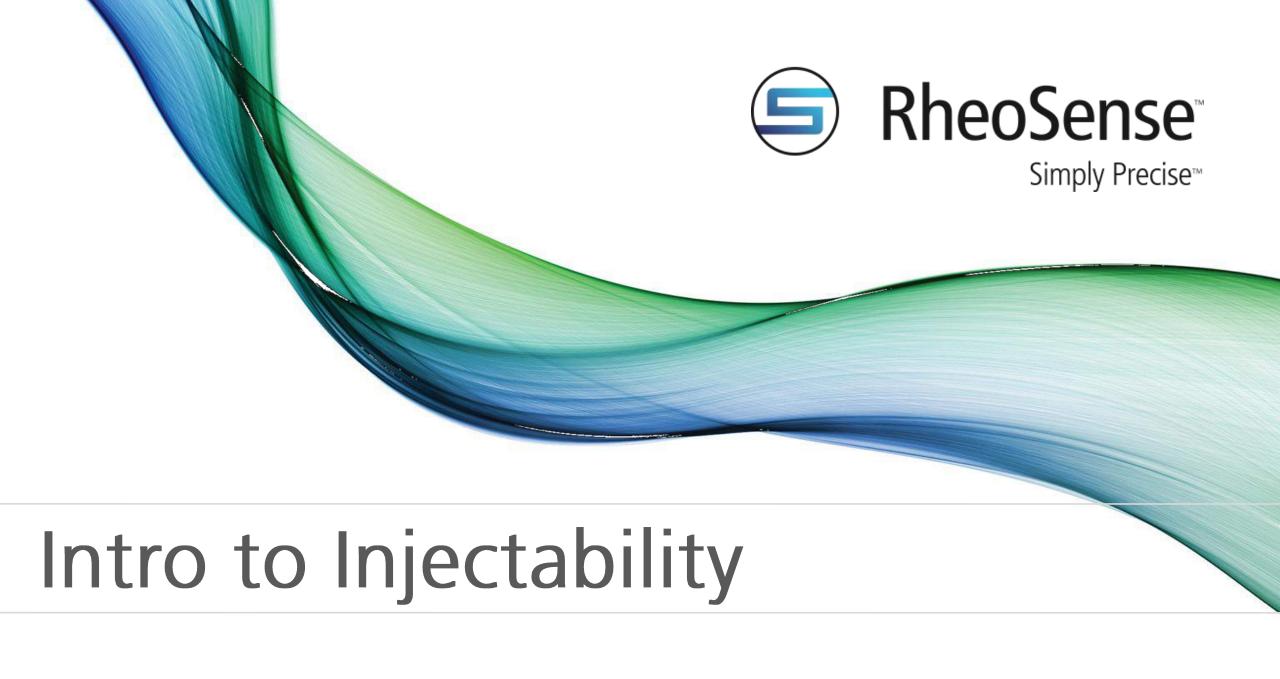
29 gauge needle Injection force =
$$8\eta l_n Q \frac{{R_b}^2}{{R_n}^4}$$
 +piston friction
$$F = \pi R_b^2 (\frac{2L_n}{R_n}) \eta \dot{\gamma}_w + piston \ friction$$

Gauge	D _n	D_b	L _n	Injection Rate, Q	n	Shear Rate	Viscosity	Force	Difference %
	mm	mm	mm	ml/s		1/s		N	
29	0.184	6.35	12.7	0.1	1	163511	30.00	42.890	0.00
29	0.184	6.35	12.7	0.1	0.8	173730	14.03	21.304	50.33
29	0.184	6.35	12.7	0.1	0.5	204389	9.53	17.028	60.30

The Rheo-"makes"-Sense Advantage

- Small Sample Volume (≥ 50 µL)
- "True" Viscosity for injectability
- Shear rate range up to 1,400,000 1/s

Thank You!



The END...

Thank You!

m-VROC® Specifications

50 μl	Min Sample Volume
0.5 ~ 1,400,000	Shear Rate Range, s ⁻¹
0.2 ~ 100,000	Viscosity Range, mPa-s (cP)
4 ~ 70 ° C	Temperature Range
2% of Reading	Accuracy
0.5% of Full Scale	Repeatability
Built-In	Temperature Sensor
Included	Software
Yes	Non-Newtonians?
Yes	Temperature Sweep
Yes	Shear Rate Sweep

Chip module surface material:

 borosilicate glass, silicon, PTFE, ETFE, PEEK, platinum, Perlast (Kalrez Optional)

CE certified

Additional Customization (i.e.: 20µl Sample Volume Testing)

Listed in USP

Non-Newtonian Standard.

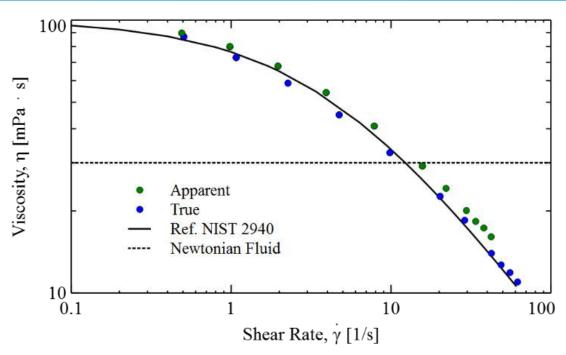


Figure 1. Characterization of a non-Newtonian standard using $m\text{-VROC}^{\otimes}$. Measurements of apparent viscosity (green) and true viscosity (blue) compared to certified NIST certified viscosity non-Newtonian standard 2940 (solid black). The behavior of an ideal Newtonian fluid is given by the dashed line.

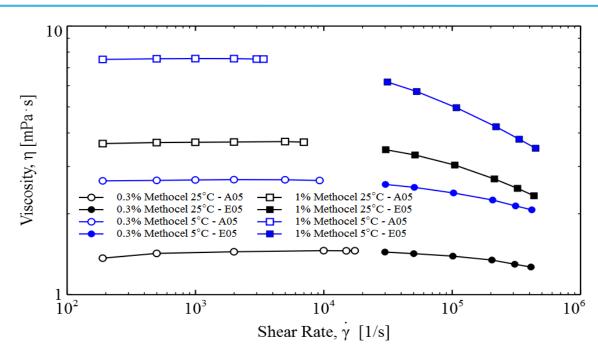
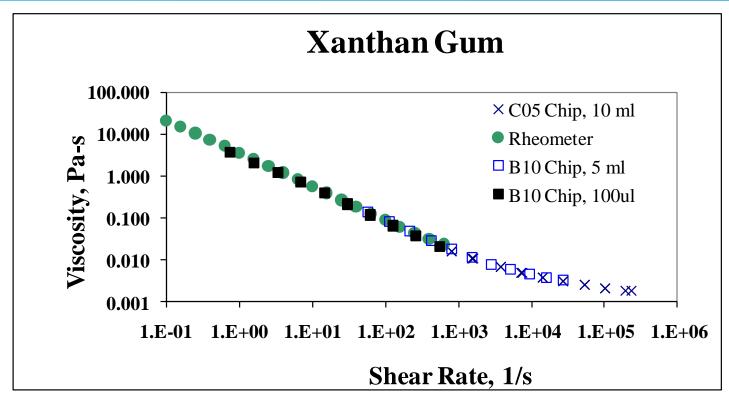



Figure 2. Measurements of true viscosity versus true shear rate for 0.3% (circles) and 1% (squares) MethocelTM water solutions. Samples were tested at 5°C (black) and 25°C (blue) for a wide range of shear rates (200-400,000 1/s) using A05 (open) and E05 (filled) VROC® chips. Comparison of measurements between chips shows excellent agreement.

Results- True Shear Viscosity

Customer supplied comparison between *m*-VROC™ and Anton Paar MCR Rheometer * Notice the shear rate limitation with conventional Rheometers!

CASE STUDY: Injection of Prefilled High Viscosity Drugs Using Disposable Auto-Injector

David Daily, Guy Keenan, Lior Raday | Elcam Medical, Bar-Am 13860, Israel

Background

Elcam Medical's line of innovative Auto-Injectors for selfadministration includes unique configurations - both for liquid drugs in prefilled syringes (PFS version), and for powder or liquid drugs in vials (DV versions).

While the size of self-injection market continues to grow at two-digit annual rate, Elcam is widening its product portfolio through new auto-injector designs for high viscosity drugs (see pictures below).

Elcam Medical's New Flexi-Q Disposable Auto-Injector Design for High Viscosity Drugs in Prefilled Syringes

Pharmaceutical companies invest major resources in developing new drugs for subcutaneous self-injection market besides stabilizing their marketed dry formulations in liquid form.

More and more of these compounds raise viscosity issues because of two major reasons:

- Development of sustained release /depot formulations dedicated to achieve less frequent injections (e.g., PEGylation, mAb).
- Trend towards SC injections which are limited in dose volumes and that allow self-administration.

Consequently, the demand for drug delivery devices which are capable of subcutaneously injecting such viscous compounds have followed.

Major parameters affecting injection force are: liquid viscosity, injection speed/ flow-rate, needle inner diameter (ID) and needle length.

When designing an auto-injector for high viscosity drugs there are more challenges that have to be addressed. Some of these are:

- High rigidity is demanded from such a device because much higher forces are involved.
- When using mechanical springs as the injection energy source - dealing with "creep phenomenon" of plastic parts through long shelf life.
- There is a risk of damaging the glass syringe at impact and high injection forces.
- High forces are usually accompanied with loud sounds during operation which can intimidate the user and potentially increase pain perception.
- Application of a constant force during injection progression while keeping optimal and reasonable injection time.
- Keeping design simplicity and acceptable dimensions for reliability, robustness and market acceptance.

Study Objective

Analyze the required forces to inject viscous liquids (ranging 5-45 cP) through variable needle gauges and injection speeds (flow-rates).

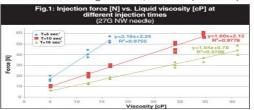
This data is used for design requirements characterization of auto-injector for high viscosity drugs.

Method

This experiment explored the influence of liquid viscosity, injection speed/ flow-rate and needle ID on the force that is needed to be applied on the plunger. The injection was performed on a Tension-Compression machine at constant speeds for achieving injection times of 5, 10 and 16 sec. with 1.0 mL of liquid and 1 mL long glass syringes.

Different glycerin percent weights in aqueous glycerin solutions at a given temperature were used to simulate high viscosity drugs.

23, 26 and 27 gauge normal-walled (NW) needles were used (ID, min.: 0.317, 0.232 and 0.184 mm respectively, ISO 9626). All needles were ½" long.


NOTE:

- 26G NW needle can simulate use of 27G thin-walled (TW) needle (ID, min.: 0.241 mm).
- 23G NW needle simulates 26G TW needle (ID, min.: 0.292 mm).


Results and Discussion

Figures 1 and 2 below show a summary of representative results from the study (while using 1 mL injection volumes and 1 mL long glass syringes):

- Fig. 1 shows the required injection forces for a specific liquid viscosity while using a 27G NW needle at flowrates representing 5, 10 and 16 sec. of injection time.
- Fig. 2 shows the required injection forces for a specific liquid viscosity for flow-rate representing 10 sec. injection duration while using 27G NW, 26G NW (*27G TW) and 23G (*26G TW) needles.

As expected and as can be seen in Fig. 1, the required injection forces are proportional to the liquid viscosity and inversely proportional to the injection duration. Shorter injection times and higher viscosities are associated with higher injection forces. For example, while using the most common 1 mL long glass syringe with 27Gx1/2* NW needle, at ~ 15 cP viscosity 1 mL volume, you may need an average injection force of ~ 50 N, ~ 26 N and only 16 N at injection durations of 5, 10 and 16 seconds, propositions.

In Fig. 2 it can be seen that as the needle tube ID is increased, the injection force is significantly decreased. For example, for achieving a reasonable injection duration of 10 sec at ~ 30 cP viscosity 1 mL volume, using most common 1 mL long glass syringe with 27Gx1/2" NW needle you may need an average injection force of ~ 50 N, while only ~ 22 N and 5 N using 27G TW and 26G TW needles, respectively.

Note: In addition to the resistance to flow of the viscous liquid through the needle, the measured injection force comprises also of other contributing friction forces such as a friction force between the plunger-stopper and the glass syringe. These results can be explained using fluid mechanics equations (see appendix).

Conclusions

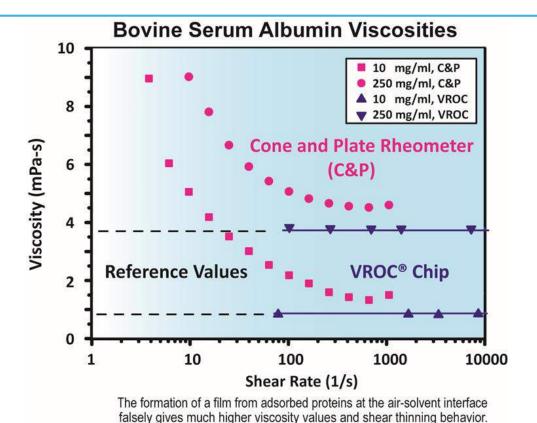
For automatic injection of high viscosity drugs, two approaches can be used:

 Increasing the needle ID and thus reducing the required injection force while keeping reasonable usability injection duration.

 Increase the injection spring force, or, using an alternative energy source for injection (such as compressed gas/air, electric motor, etc.).
 A combination of the two approaches can be used as well.

While the major challenge of the first approach is a logistic challenge - prefillable syringes with staked needles are most common with 27G NW needles, the challenges of the second approach are significant design challenges - keeping the auto-injector small, reliable, not noisy, keeping the glass syringe integrity, and more

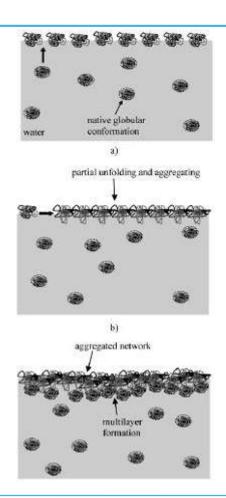
Appendix - Fluids Mechanics Theory


Calculated Reynolds number for the flow in the needle tubing doesn't exceed Re=320. Laminar flow occurs at low Reynolds numbers (Re ≤ 2100) where viscous forces are dominant, and is characterized by smooth, constant fluid motion.

For laminar flow, pressure drop in a pipe is given by, $\Delta P = (\frac{8l\mu}{m^2})Q$ where:

I – pipe length, m - Dynamic viscosity, R – pipe diameter and Q – flow rate.

Results- m-VROCTM vs. Cone & Plate



(V. Sharma, A. Jaishankar, Y.-C. Wang, and G. Mckinley, manuscript in preparation)

Soft Matter, 7(11), 2011

Measuring with cone & plate has two challenges:

- Evaporation
- Irreversible absorption protein molecules at the interface:
 - Proteins migrate to the interface to minimize the interface energy
 - Molecules partially unfold and aggregate
 - Can form gel-like network
- Shows "apparent" shear thinning behavior

